However, this is only true for integer values of n. The factorial for
non-integer values can be defined using the gamma function. The integral form of
the gamma function is
Γ(z)=∫0∞xz−1e−xdx
From here we’ll inductively derive an expression for finding the factorial of
any real or complex z, with ℜ(z)>0. We do this by first finding
Γ(1):
Γ(23) can be given in terms of Γ(21) by the property Γ(z+1)=zΓ(z):
Γ(23)=(21)Γ(21)=21∫0∞x−21e−xdx
If we substitute x=u2, with dx=2udu, we get
Γ(23)=∫0∞e−u2du
The right hand side is known as the Gaussian integral. To evaluate this integral we must first square both sides. This may seem strange, however, in order to solve it the integral must be transformed from cartesian to polar coordinates.
The transformation to polar coordinates comes from making the substitution u=rcosθ and v=rsinθ. And so, in terms of the new variables, (r,θ), the integral is taken over 0⩽r⩽∞ and 0⩽θ⩽2π, and dudv becomes rdrdθ. This linear transformation can be represented by the Jacobian matrix:
The way we’ve transformed the coordinates may seem a bit confusing and abstract. I have put some links at the bottom of the page which better explain how this transformation is made and what’s actually going on when the Jacobian matrix is used.
Splitting the double integral makes it easier to see how it can be evaluated:
We showed earlier that Γ(23)=(21)!. And so, using this we get:
(21)!=2π
Though the method of getting to the above result was
pretty convoluted, I think with just how mind-blowing the result is, it’s
definitely worth working through.
We showed earlier that
Γ(23)=(21)Γ(21).
And so, from the result we just proved, it follows that
Γ(21)=π
If we recall the property Γ(z)=(z−1)!, then we see that