skip to content
Aymen Hafeez

The Mellin transform of a function ff is given by

{Mf}(s)=ϕ(s)=0xs1f(x)dx \begin{aligned} \left\{\mathscr{M}f\right\}(s)=\phi(s)=\int_0^{\infty}x^{s-1}f(x)\text{d} x \end{aligned}

For the function

f(x)=1ex1 \begin{aligned} f(x)=\frac{1}{e^x - 1} \end{aligned}

we have

ϕ(s)=0xs1ex1dx=n10xs1enxdx \begin{aligned} \phi(s)&=\int_0^{\infty}\frac{x^{s-1}}{e^x - 1}\text{d} x \\ &=\sum_{n \geq1}\int_{0}^{\infty}x^{s-1}e^{-nx}\text{d} x \end{aligned}

Making the substitution u=nxu=nx gives

ϕ(s)=n11ns0us1eudu=ζ(s)Γ(s) \begin{aligned} \phi(s)&=\sum_{n \geq1}\frac{1}{n^s}\int_{0}^{\infty}u^{s-1}e^{-u}\text{d} u \\ &=\zeta(s)\Gamma(s) \end{aligned}

Equating this to the above integral gives the desired result:

ζ(s)Γ(s)=0xs1ex1dxζ(s)=1Γ(s)0xs1ex1dx \begin{aligned} \zeta(s)\Gamma(s)&=\int_{0}^{\infty}\frac{x^{s-1}}{e^x - 1}\text{d} x \\ \zeta(s)&=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x - 1}\text{d} x \end{aligned}

Another method of deriving this result is by starting with the Gamma function itself:

Γ(s)=0ts1etdt\begin{equation*} \begin{aligned} \Gamma(s) = \int_{0}^{\infty} t^{s-1} e^{-t} \text{d} t \end{aligned} \end{equation*}

Making the substitution t=nut = nu with dt=ndu\text{d} t = n\text{d} u, we have

Γ(s)=0(nu)s1enudu=0nsus1enudu\begin{equation*} \begin{aligned} \Gamma(s) &= \int_{0}^{\infty} (nu)^{s-1} e^{-nu} \text{d} u \\ &= \int_{0}^{\infty} n^s u^{s-1} e^{-nu} \text{d} u \end{aligned} \end{equation*}

The nsn^s term can be brought out of the integral, and multiplying both sides by 1ns\frac{1}{n^s} gives,

Γ(s)1ns=0us1enudu\begin{equation*} \begin{aligned} \Gamma(s) \frac{1}{n^s} = \int_{0}^{\infty} u^{s-1} e^{-nu} \text{d} u \end{aligned} \end{equation*}

Taking the sum over both sides gives us the Riemann zeta function on the left,

Γ(s)n=11ns=n=10us1enuduΓ(s)ζ(s)=0us1n=1enudu\begin{equation*} \begin{aligned} \Gamma(s) \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \int_{0}^{\infty} u^{s-1} e^{-nu} \text{d} u \\ \Gamma(s) \zeta(s) = \int_{0}^{\infty} u^{s-1} \sum_{n=1}^{\infty} e^{-nu} \text{d} u \\ \end{aligned} \end{equation*}

Seeing that the enue^{-nu} term is just (eu)n({e^{-u}})^n, we can rewrite the infinite geometric series:

Γ(s)ζ(s)=0us1(11eu1)du\begin{equation*} \begin{aligned} \Gamma(s)\zeta(s) = \int_{0}^{\infty} u^{s-1} \left( \frac{1}{1 - e^{-u}} - 1 \right) \text{d} u \end{aligned} \end{equation*}

Note that 11 must be subtracted as the summation starts from n=1n=1 rather than n=0n=0. With some rearranging and manipulation we get,

Γ(s)ζ(s)=0us1(11eu1eu1eu)du=0us1(eu1eu)du=0us1(1eu1)du\begin{equation*} \begin{aligned} \Gamma(s) \zeta(s) &= \int_{0}^{\infty} u^{s-1} \left( \frac{1}{1 - e^{-u}} - \frac{1 - e^{-u}}{1 - e^{-u}} \right) \text{d} u \\ &= \int_{0}^{\infty} u^{s-1} \left( \frac{e^{-u}}{1 - e^{-u}} \right) \text{d} u \\ &= \int_{0}^{\infty} u^{s-1} \left( \frac{1}{e^u - 1} \right) \text{d} u \end{aligned} \end{equation*}

And so, we have the desired result:

ζ(s)=1Γ(s)0us1eu1du\begin{equation*} \begin{aligned} \zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{u^{s-1}}{e^u - 1} \text{d} u \end{aligned} \end{equation*}