skip to content
Aymen Hafeez
Table of Contents

Infinite products

The sinc\text{sinc} function is defined for x0x\neq0 as

sinc(x)=sin(x)x\text{sinc}(x)=\frac{\sin(x)}{x}

It can also be expressed as an infinite product:

sin(x)x=n=1(1x2π2n2)\frac{\sin(x)}{x}=\prod_{n=1}^{\infty}\left(1-\frac{x^2}{\pi^2n^2}\right)

The normalised sinc\text{sinc} function is

sin(πx)πx=n=1(1x2n2)\frac{\sin(\pi x)}{\pi x}=\prod_{n=1}^{\infty}\left(1-\frac{x^2}{n^2}\right)

See this post on generating π\pi using the prime numbers for a short, non-rigorous explanation on expressing functions in this form, or look into the Weierstrass factorisation theorem for a more rigorous explanation on expressing functions in this form. Letting x=12x=\frac{1}{2} gives

2π=n=1(114n2)=n=1(4n214n2)\frac{2}{\pi}=\prod_{n=1}^{\infty}\left(1-\frac{1}{4n^2}\right) = \prod_{n=1}^{\infty}\left(\frac{4n^2-1}{4n^2}\right)

This is Wallis’s formula for π\pi. And taking the reciprocal:

π2=n=1(4n24n21)\frac{\pi}{2}=\prod_{n=1}^{\infty}\left(\frac{4n^2}{4n^2-1}\right)

If instead we let x=14x=\frac{1}{4} we get

22π=n=1(1116n2)=n=1(16n2116n2)\frac{2\sqrt{2}}{\pi}=\prod_{n=1}^{\infty}\left(1-\frac{1}{16n^2}\right) =\prod_{n=1}^{\infty}\left(\frac{16n^2-1}{16n^2}\right)

Again, taking the reciprocal gives

π22=_n=1(16n216n21)\frac{\pi}{2\sqrt{2}}=\prod\_{n=1}^{\infty}\left(\frac{16n^2}{16n^2-1}\right)

π24=_n=1(16n216n21)\frac{\pi\sqrt{2}}{4}=\prod\_{n=1}^{\infty}\left(\frac{16n^2}{16n^2-1}\right)

These are both quite nice formulae for π\pi. However, they converge VERY slowly. The first expression approximates π3.1415848\pi\approx3.1415848 after ten thousand terms.

A recursive formula for π\pi

I came across another expression whilst writing the π\pi and primes post. In that post we showed that

πxcot(πx)=12n=1ζ(2n)x2n\pi x\cot(\pi x)=1-2\sum_{n=1}^{\infty}\zeta(2n)x^{2n}

πx2cot(πx)=12n=1ζ(2n)x2n\frac{\pi x}{2}\cot(\pi x)=\frac{1}{2}-\sum_{n=1}^{\infty}\zeta(2n)x^{2n}

Letting x=14x=\frac{1}{4}

π8=12n=1ζ(2n)42n\frac{\pi}{8}=\frac{1}{2}-\sum_{n=1}^{\infty}\frac{\zeta(2n)}{4^{2n}}

We’ve shown that the Riemann zeta function at even positive integers is given by the following expression:

ζ(2n)=(1)k+1(2π)2nβ2n2(2n)!\zeta(2n)=\frac{(-1)^{k+1}(2\pi)^{2n}\beta_{2n}}{2(2n)!}

The first few even valued Bernoulli numbers, β2n\beta_{2n}, are

β2=16;  β4=130;  β6=142;  β8=130\beta_2=\frac{1}{6}; \ \ \beta_4=-\frac{1}{30}; \ \ \beta_6=\frac{1}{42}; \ \ \beta_8=-\frac{1}{30}

And so, ζ(2n)\zeta(2n) for the first few values of nn is

ζ(2)=π26;  ζ(4)=π490;  ζ(6)=π6945;  ζ(8)=π89450\zeta(2)=\frac{\pi^2}{6}; \ \ \zeta(4)=\frac{\pi^4}{90}; \ \ \zeta(6)=\frac{\pi^6}{945}; \ \ \zeta(8)=\frac{\pi^8}{9450}

Expanding the sum out:

π8=12π2642π49044π694546π8945048. . .\frac{\pi}{8}=\frac{1}{2}-\frac{\pi^2}{6\cdot4^2}-\frac{\pi^4}{90\cdot4^4}-\frac{\pi^6}{945\cdot4^6}-\frac{\pi^8}{9450\cdot4^8}-.\ .\ .

Although not particulary useful for actually generating or approximating π\pi, it’s still pretty cool. We can simplify it visually by defining a constant ana_n:

an=(1)n+14nβ2n2(2n)!a_n=\frac{(-1)^{n+1}4^n\beta_{2n}}{2(2n)!}

So the expression becomes

π8=12a1π242a2π444a3π646a4π848. . .\frac{\pi}{8}=\frac{1}{2}-a_1\frac{\pi^2}{4^2}-a_2\frac{\pi^4}{4^4}-a_3\frac{\pi^6}{4^6}-a_4\frac{\pi^8}{4^8}-.\ .\ .

Euler

Euler famously proved that ζ(2)=π26\zeta(2) = \frac{\pi^{2}}{6}. He started with the function sinxx\frac{\sin x}{x}, i.e. the sinc\text{sinc} function, which has the Taylor series expansion

sinc x=sinxx=n=0(1)n(2n+1)!x2n=1x23!+x45!x67!+\text{sinc }x = \frac{\sin x}{x} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!}x^{2n} = 1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} - \frac{x^{6}}{7!} + \ldots

The sinc\text{sinc} function can also be expressed as the following infinite product:

sinc x=n=1(1x2π2n2)=(1x2π2)(1x24π2)(1x29π2)\text{sinc }x = \prod_{n=1}^{\infty} \left( 1 - \frac{x^{2}}{\pi^{2}n^{2}} \right) = \left( 1 - \frac{x^{2}}{\pi^{2}} \right) \left( 1 - \frac{x^{2}}{4\pi^{2}} \right) \left( 1 - \frac{x^{2}}{9\pi^{2}} \right) \ldots =1x2(1π2+14π2+19π2+)+= 1 - x^{2} \left( \frac{1}{\pi^{2}} + \frac{1}{4\pi^{2}} + \frac{1}{9\pi^{2}} + \ldots \right) + \ldots

Equating the x2x^{2} coefficients of the above to the Taylor series expansion gives the desired result:

(1π2+14π2+19π2+)=13!-\left( \frac{1}{\pi^{2}} + \frac{1}{4\pi^{2}} + \frac{1}{9\pi^{2}} + \ldots \right) = - \frac{1}{3!}

ζ(2)=_n=11n2=π26\zeta(2) = \sum\_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}

A similar result can be derived for the odd squares. Instead of sinc x\text{sinc } x we start with cosx\cos x. The series expansion for cosx\cos x is

cosx=n=0(1)n(2n)!x2n=1x22!+x44!x66!+\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!}x^{2n} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \ldots

cosx\cos x can also be expressed as an infinite product:

cosx=n=1(14x2π2(2n1)2)=1x2(4π2+49π2+425π2+)+\cos x = \prod_{n=1}^{\infty} \left( 1 - \frac{4x^{2}}{\pi^{2}(2n - 1)^{2}} \right) = 1 - x^{2}\left( \frac{4}{\pi^{2}} + \frac{4}{9\pi^{2}} + \frac{4}{25\pi^{2}} + \ldots \right) + \ldots

And again, equating the x2x^{2} coefficients:

4π2(1+19+125+)=12!- \frac{4}{\pi^{2}}\left( 1 + \frac{1}{9} + \frac{1}{25} + \ldots \right) = - \frac{1}{2!}

_n=11(2n1)2=π28\sum\_{n=1}^{\infty} \frac{1}{(2n - 1)^{2}} = \frac{\pi^{2}}{8}

Going back to the infinite product form of sinxx\frac{\sin x}{x},

sinc x=n=1(1x2π2n2)=(1x2π2)(1x24π2)(1x29π2),\text{sinc }x = \prod_{n=1}^{\infty} \left( 1 - \frac{x^{2}}{\pi^{2}n^{2}} \right) = \left( 1 - \frac{x^{2}}{\pi^{2}} \right) \left( 1 - \frac{x^{2}}{4\pi^{2}} \right) \left( 1 - \frac{x^{2}}{9\pi^{2}} \right) \ldots,

and noting that each term is the difference of two squares, we can separate them out:

sinx=x(1xπ)(1+xπ)(1x2π)(1+x2π)(1x3π)(1+x3π)\sin x = x\left( 1 - \frac{x}{\pi} \right)\left( 1 + \frac{x}{\pi} \right) \left( 1 - \frac{x}{2\pi} \right)\left( 1 + \frac{x}{2\pi} \right) \left( 1 - \frac{x}{3\pi} \right)\left( 1 + \frac{x}{3\pi} \right) \ldots

Taking the log\log of both sides:

logsinx=logx+log(1xπ)+log(1+xπ)+log(1x2π)+,\log \sin x = \log x + \log \left( 1 - \frac{x}{\pi} \right) + \log \left( 1 + \frac{x}{\pi} \right) + \log \left( 1 - \frac{x}{2\pi} \right) + \ldots,

and then taking the derivative:

cosxsinx=1x1πx+1π+x12πx+\frac{\cos x}{\sin x} = \frac{1}{x} - \frac{1}{\pi - x} + \frac{1}{\pi + x} - \frac{1}{2\pi - x} + \ldots

Letting x=π4x = \frac{\pi}{4} gives Leibniz’s formula for π\pi:

π4=113+1517+19.\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots .